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1. Introduction

In this project we reproduce the results from Gelfandldi.], in which they show the ease and effectiveness of
Gibbs sampling applied to a variety of complex inference pnahleSpecifically, we focus on the hierarchical model
example given in [1], and we achieve nearly identicallteso those in [1]. We also perform some more pri@ict
model checking and monitoring for convergence using BOA.

2. Hierarchical Model of Rat Growth

We illustrate a full implementation of Bayesian hierarghinodeling using Gibbs sampling, and demonstrate the
ease of implementation and accuracy of results. daiesfon a population growth problem where the weights of 30
young rats were measured at the end of each week foelswiest in a control group, and then in a treatngeotip.
Initially, we deal with the control group to illustrate tmedel and the Gibbs sampling methodology used. The model
is quite complex, with 66 total number of parameters.

2.1 Model

A short inspection of the data shows that it is reasertaldssume individual straight-line growth curves. We also
assume homoscedastic (i.e. having the same variance) |moeasurement error. The full measurement model for
the group is then:

Y, ~N(a, +BX;,0?), i=L..k j=1..n,

where: Y; denotes the weight dfrat at the end of wegkX; is age in days of th& rat at the end of weék k = 30,
andn; = 5. Each rat has its own individual growth pararseter, 5.) , whereuw; is the initial weight of rat, and;
is its growth rate. The population structure is then maodase
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A full Bayesian analysis requires specificatiopabrs for
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Assuming independence of the priors, a standard speaifidatihe following Normal-Wishart-InverseGamma form:
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The measurement model for tiindividual can be rewritten 84 ~ N(X,6,,071,,) , where, = (a;, 8,)" andX;

denotes the corresponding design matrix.

In order to implement the Gibbs sampler, we need the full tondis foré, u.,2c,0.. Due to space limitations, we
will only show how the full conditionals fd#; are derived, and will just give the final forms of thet.re3 he full joint
posterior is:
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The full conditional fo; is then:
P8 Y, 1, 21, 02) ON(Y, | X,6,0¢1, )N, | 1. Z,)

= expl- (Y = X,8)T(O:71,)(Y = X,8)).expi-2 (6 - i) E6, - 1)
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To get a normal kernel, we need something of the fcﬁmp{—a(é’i -A'B( - A)}

Expanding the above expression for the full conditiond,ajrouping terms together, we get foandB:
A= (02X X +Z N O2X]Y, +Z ) B=(o.?X! X, +2 )™

The full conditional fo, is then

Q|Yi,,uc,zgl,af:N(A,B), fori=1,...k

In the same manner the rest of the full conditionals aireetkr
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Uninformative prior information relative to the one providedhwy data is given by the hyperparameters :

ct=0 v,=0 =2 R= 1000
=5 V=0 pE4 Lo o1

2.2 Convergence

The convergence of the simulations was monitored using the@@kage in R, specifically using the Geweke Z-
score analysis. Geweke scores are based on the ctimeteipta z-score for a parameter is much biggen thin
absolute value, then the mean level of the time ser8lidrifting. In the interest of space, we only shiwe Z-
score graphs for 2 of tifeparameters of rat 1 and rat 10 in figure 1 below.

paril parl0
o e ——— — —— —————1 M e ———1
o = o beta.drawsCGo v o=, . hetg dravwsCG
o 2 5 5
o = i @ z
P - - =] - -
L R e Y L I
T T T T T T T T T T
0 20 40 B0 a0 0 20 40 B0 a0
First keration in Segment First tteration in Segmernt

Figure 1. Geweke Z-Scoresfor beta parameter of rat 1 and rat 10.

2.3 Marginal Posterior Densities for the I nitial Weight and Growth Rate of the Control Group

Using all 150 observations, we produce simulation estinfiatdéhe marginal posterior densities for the initial giei

of rats in the control group, , and for the growth rate of rats in the control grup,These are shown in figure 2
below. The estimated mean and Sk a@fre 107 and 5.42, and the mean and SP afe 6.17 and 0.22, respectively.
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Figure2. Marginal Posterior Density Estimatesfor Initial Weight and Growth Rate (150 obser vations).

2.4 Missing Values

To get a sense of how well this model performs, we ded¢aeemove large chunks of the data, and see how the
estimated posterior densities compared to their coumtergwhen using all 150 observations. We repeated the
simulation with a 90 observation data set, which coadief removing the final data point from rats 6-10, the fhal
from 11-20, the final three from 21-25, and the final four f28¥80. The 75 observation set was obtained from the
set of 90 by removing all but one observation from rats 16-30e plots of the marginal posterior densitiesffan
both scenarios are shown in figures 3 and 4 below. Comparthg density fop in figure 2, one can see that the
densities with missing values are not as tight, whigxected. Nevertheless, they match quite well, indigatie
robustness of the model.
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Figure 3. Marginal Posterior beta (90 abs). Figure4. Marginal Posterior beta (75 obs).

2.5 DataReplicates

Following the example in [1], we ran a predictive model kl@tone of the rats in the control group, rat #26. The
goal is to compare how the replicated data from the modgbaies to the actual observations. Figure 5 shows the
results of this experiment. For each wegk;, we draw 1000 samples from the predictive distributign based on
the posterior means afs andp.s . We plot the 95% posterior predictive interval as twaniolauy lines, and the
actual observed value as a black dot. As one can sesttlad values always lies in the 95% interval, oncénaga
indicating the stability of the model in replicating the data
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Figure 5. Estimated 95% Predictive Intervalsfor 26th Rat in Control Group
Based on Data Replicates. Actual observations shown as black dots.

2.6 Data Prediction

To further test our model, we perform the following experitiie see how the model extrapolates to new unseen
data. We build a posterior model based on all observdtiomsweeks 1-4 only, and use it to predict the weights of

all 30 rats at week 5. Figure 6 shows the results in tine & a histogram of the actual values at week 5 compared
the means of the predicted values at week 5. The mdaredife between the 30 actual and predicted values is -10.8,
with a standard deviation of 8.3, which is quite good giversthée of the data. It would seem that the model tends

to over-estimate the future weights.
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Figure 6. Predicting Weightsat Week 5Based on Model From Weeks 1-4.

2.7 Treatment Effect

Finally we compare the control group to a treatment growjetiermine the effect of a supposed treatment on the
growth rate of the rats (possibly a dietary drug). ufdég below shows the estimated density of the difference of
growth rates between the treatment group and the contrgd,gas well as the ratio of the density of variance of the
growth rates. One can clearly see that the treatdefimitely retards the growth rate; the mean of thieidihce
density is -1.32 with an SD of 0.15.
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Figure 7. Difference of the growth rate (beta) and theratio of the variances
of the growth rates between the contral group (CG) and treatment group (TG).

3. Conclusions

We draw a number of conclusions from this exercise. ,Hirspite of the complexity of the model, once we were
able to derive the full conditional distributions, deriving pdstallensities for any parameter or function of
parameters becomes trivial using Gibbs sampling. For exasgdd-igure 7, where we were able to estimate the
posterior density ofg ¢/ og_cc, Which are the individual components of the fpllmatrices. This is something that
is not easily done using other methods. Second, using Gibbsreamelwere able to show that the population
growth rate is lower in the treatment group, i.e. tHaatever treatment is being applied has an effect.

However, in our experiments, the treatment group disdagmingly the same variation around its population growth
rate as the control group (mean of the ratio densitygimdi 7 is 0.98), whereas in [1], the posterior density of the
ratio implies a tigher density for the growth rate fa tfteatment group. Unfortunately, the specifics of Hoav t
authors arrived at their plots is not available, thusenabling us to do any further substantive comparisons.
Nevertheless, all other results match very well.
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