
Hierarchical Dirichlet Processes

AMS 241, Fall 2010
Vadim von Brzeski

vvonbrze@ucsc.edu



2

Reference

• Hierarchical Dirichlet Processes, Y. Teh, 
M. Jordan, M. Beal, D. Blei, Technical 
Report 653, Statistics, UC Berkeley, 2004.
– Also published in NIPS 2004 : Sharing 

Clusters among Related Groups: Hierarchical 
Dirichlet Processes

• Some figures and equations shown here 
are directly taken from the above 
references (indicated if so)
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The HDP Prior
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Source: Teh, 2004.



4

�� ��� � ��� 	
 � ��� � �� � �� � �� � � � � �

�� � � 	� 	 � �

Source: Teh, 2004.
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Going back to original definition of DP, we can derive relationship between 
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and � :
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Prior and Data Model
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Source: Teh, 2004.
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Source: Teh, 2004.
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Application : Topic Modeling
• Topic = (multinomial) distribution over words 

– Fixed size vocabulary; p(word | topic)
– F : Multinomial kernel, H : Dirichlet()

• Document = mixture of one or more topics
• Goal = recover latent topics; use topics for clustering, 

finding related documents, etc.
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Σ p = [0.4, 0.3, 0.3]
J = 6 docs (80 – 100 words / doc)
2 – 3 mix components / doc
V (vocabulary size) = 10

3 
T

R
U

E
  T

O
P

IC
S

�� � ��� ��� �
	 ��  �	 �	 � 	 ��� � � � � � � �
� � 	 � �� � �



12

Inference via Gibbs Sampling
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Source: Teh, 2004.
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TRUTH : 

For each xji whose true  
component was k, we have 
B MCMC draws:
{

�

ji
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ji
(2),….., 
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ji
(B)}
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ESTIMATE : 
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nk
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(B)



14

Truth vs. Posterior Point and 10/90 Interval Estimates for E[ 

�

j | data ]
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Simulated Data Histograms vs. Est. Posterior Predictive : E[ 

�

j0 | data ]  
For each doc j : avg (over states b = 1..B) draws of 

�

j0
(b) via CRP config @ state b.

Data Est Post. Predictive
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Simulated Data Distributions vs. Est. Posterior Predictive for New Observation xj0

Data histogram

Data density est.

Predictive x0
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R Code Available

• Works, but SLOOOOOOOOOW….

http://www.numberjack.net/download/classes/ams241/project/R


