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1 Introduction

This work is part review and part experimental investigation of the work done by Teh, Jordan, Beal, and Blei on
Hierarchical Dirichlet Processes, first published as a technical report in 2004 [7]. In this report, we review the theory
and motivation behind hierarchical Dirichlet processes (HDP), and we study HDP inference using simulated data
and a Gibbs sampler we developed for this purpose. We assume the reader is already familiar with the theory behind
(non-hierarchical) Dirichlet processes and Dirichlet process mixture models, and focus specifically on the hierarchical
extension of those models.

Hierarchical Dirichlet process models deal with the problem of modeling data that is divided into groups which
share some common traits, e.g. data from counties in a given state. They are a flexible, non-parametric extension to
the standard Bayesian parametric hierarchical models. Parametric (Bayesian) hierarchical models assume that the
data distribution in each group j = 1, ..., J has the same form, e.g. Normal(µ, σ2), albeit it with different underlying
parameters for each group, e.g. group dependent means N(µj , σ

2). The sharing of information in such models can
be achieved by giving the group level distributions a common variance parameter, which is itself a random variable
with a prior distribtion. The flexibility in HDP models comes from the fact that data distribution in each group is
driven by a group-specific non-parametric Dirichlet process prior, thus allowing each group’s distribution to take on
a completely different form. The sharing of information across different groups comes about by making the group
level distributions dependent on a common global measure, which is also driven by a Dirichlet process. We formalize
this idea below.

The application that motivates our study of hierarchical Dirichlet processes is in the field of information retrieval
(IR) : modeling text documents as mixtures of topics, i.e. topic modeling. In this scenario, each document (in a
fixed collection of documents, i.e. a corpus) is treated as a “bag-of-words” : all the words in a given document are
independent and exchangeable (this is obviously a very strong assumption, but it is nevertheless a standard one in the
IR domain). We assume that the words in a document are generated from a number of latent mixture components
or topics, and each topic is typically taken to be a (multinomial) distribution over a set of words from a finite and
given vocabulary [4]. The goal is to discover the latent topics in a given set of documents and subsequently use them
to generate a compact representation of each document in the corpus; this representation can be used to discover
and/or cluster related documents. Mapping this to our HDP model, each document is a group of observations
(words), and we model it as a mixture of topics (distributions); furthermore, we are allowed to share (re-use) topics
among different groups (documents).

The report is organized as follows. Section 2.1 formally defines the HDP and our data model; section 3 discusses
various representations of the HDP and examples of the prior distributions it induces; section 4 describes a Gibbs
sampling procedure for inference in HDP models; section 5 describes our experimental setup and results; section 6
concludes the report.

2 Definitions

2.1 Hierarchical Dirichlet Processes

Equations (1) and (2) formally define the hierarchical Dirichlet process. Given a concentration parameter γ and a
base measure H , the top level (global) measure G0 is a draw from a Dirichlet process DP(γ, H). Given G0, each
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measure Gj in group j = 1, ..., J , is a draw from a DP(α0, G0), a Dirichlet process with concentration parameter α0

and base measure G0.

G0 | γ,H ∼ DP (γ,H) (1)

Gj | α0, G0 ∼ DP (α0, G0) (2)

We can now observe how the sharing of information among groups comes about. Regardless of whether H is
continuous or discrete, G0 is discrete with probability one since it is a draw from a DP. This means that G0 only has
support at a (infinitely) countable set of locations, {θk}

∞
k=1. Since each Gj is a draw from a DP with base measure

G0, it is also discrete and it must have support at exactly the same set of locations. Thus, the individual groups
j = 1, ..., J , have no choice but to share θk atoms.

We can contrast the above HDP formulation with a simpler hierarchical model where each Gj is a conditionally

independent draw from a global Dirichlet process DP(α0, G0(τ)), where G0(τ) is a parametric distribution with
random parameter τ . The sharing of information among groups is not possible in this model, for example, in the
case where G0(τ) is continuous. Since each Gj is by definition a conditionally independent (not i.i.d.) draw from
DP(α0, G0(τ)), the support each Gj has (the set of atoms {θk}

∞
k=1) will necessarily be different from group to group

given the continuous nature of G0(τ).
The HDP model is also a special case of the analysis of densities (AnDe) framework by Tomlinson and Escobar

[8]. The AnDe model treats the global base measure G0 as a draw from a mixture of DPs as opposed to a draw from
a single DP. This produces a G0 which is continuous in general, and therefore again does not permit the sharing of
atoms among groups.

2.2 Data Model

Given the above definition of an HDP, we can now develop an HDP mixture model of data. In this setting, the
observations (data) are organized into groups, and we assume that the observations are exchangeable within a group.
We let j = 1, ..., J , index the J groups and we let xj = (xji), i = 1, ..., nj, denote the nj observations in group j. We
also assume the xj , j = 1, ..., J , are exchageable at the group level. Each xji is drawn from a mixture model, whose
composition (i.e. which exact components are mixed and in what proportion) is drawn once per group.

Equations (3) and (4) define our sampling distributions. The parameter φj specifies the composition of the mixture
model in group j, and thus each φji specifies which particular mixture component is used to draw observation xji;
the variables φji can be thought of as “factors”. Let F (φji) denote the distribution of xji given factor φji. The prior
for the factors φj is Gj (equation (2)).

φji |Gj ∼ Gj (3)

xji | φj ∼ F (φji) (4)

To make the above model more concrete given our topic modeling scenario, suppose that we just have two documents
(J = 2) with five words each (nj = 5) sampled from a ten word vocabulary. Also, suppose that we have K = 3
underlying topics (mixture components), where each topic k specifies the parameters θk of a multinomial distribution
F over the words in the vocabulary. For example, if φ1 = (2, 3, 3, 2, 1, 1) and φ2 = (2, 2, 3, 3, 2, 1), x11 will be a draw
from a multinomial distribution with parameters θ2, x11 ∼ F (θ2), x12 will be a draw from F (θ3), etc. Note that in
this example each document (group) has a different distribution (mixture composition) of the same three underlying
topics. This is precisely the effect we’re trying to model using the HDP mixture model. Loosely speaking, topics
correspond to the locations of support (atoms) in a single realization of G0, and the document specific measures Gj
define the mixtures of topics in each document.

3 HDP Representations

We consider two representations of a hierarchical Dirichlet process (HDP) which will be useful for our analysis. The
first is an extension of the stick-breaking construction developed by Sethuraman [6], and the second is an extension
of the Polya urn sampling scheme knows as the Chinese Restaurant Franchise.
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3.1 Stick Breaking Representation

The stick-breaking representation for the HDP starts out by observing that since G0 ∼ DP (γ,H), it has the typical
stick-breaking representation given by:

G0 =
∞
∑

k=1

βkδθk
θk ∼ H (5)

β
′

k ∼ Beta(1, γ) βk = β
′

k

k−1
∏

l=1

(1− β
′

l ) (6)

Furthermore, Gj is also distributed as a Dirichlet process, namely Gj ∼ DP (α0, G0). Thus it also has it’s own
stick-breaking representation. However, as mentioned in section 2.1, G0 is discrete with probability one, i.e. G0 has
support at a countable set of locations θ = (θ)∞i=1. Therefore, each Gj must also have support at this same set of
locations, and we can write:

Gj =
∞
∑

k=1

πjkδθk
(7)

Going back to the original definition of a Dirichlet process as a probability measure on the space of probability
measures, and letting (A1, ..., Ar) be a measurable partition of the sample space Θ, for each j we can write:

(Gj(A1), ..., Gj(Ar)) ∼ Dirichlet (α0G0(A1), ..., α0G0(Ar))

However, since both G0 and Gj are discrete, each Gj(Al) and G0(Al), l = 1, ..., r, is just the sum of the weights πjk
and βk (respectively) that correspond to locations falling into the partition Al, specifically:

(

∑

k∈K1

πjk, ...,
∑

k∈Kr

πjk

)

∼ Dirichlet

(

α0

∑

k∈K1

βk, ..., α0

∑

k∈Kr

βk

)

, where Kl = {k : θk ∈ Al}

Given the above and the additive properties of the Dirichlet distribution, we can obtain the specific relationship
between the two sets of weights βk and πjk:

π
′

jk ∼ Beta

(

α0βk, α0

(

1−

k
∑

l=1

βl

))

πjk = π
′

jk

k−1
∏

l=1

(1− π
′

jl) (8)

Therefore, given a realization of G0 with weights β and locations θ, we can quickly produce a number of realizations
of Gj using those same locations θ but with weights πj that are a function of β. Equation (8) shows that the weights
πj are dependent on the weights β. For example, if γ is small, then only the first few β weights will be significant,
and thus regardless of the value of α0, only the first few weights of πj will be significant; however, if γ is large, then
many β weights will have an appreciable value, and how many πj weights are significant will depend on the value of
α0.

Figure 1 illustrates a number of Gj draws (CDFs) given a G0 draw for four combinations of concentration
parameters α0 and γ, with the global base measure H = Normal(0, 1). We can review Figure 1 starting from the
bottom-right, and going counter-clockwise:

• γ = 100, α0 = 100 : Both concentration parameters are relatively large, and we can see the familiar shape of
the N(0,1) CDF in G0 (solid black line). Given the high value of α0, we see that the Gj realizations (dashed
blue lines) are tightly concentrated around G0 and also approach the N(0,1) CDF.

• γ = 100, α0 = 1 : Here we allow the Gj realizations to drift away from G0 by making α0 relatively small.

• γ = 1, α0 = 1 : In this case, both parameters are relatively small. The G0 realization is now “very discrete”,
i.e. it has support at only a handful of locations. α0 is small, so the Gj realizations vary quite a bit, but note

that their support is exactly the support of G0.
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Figure 1: Sample draws from an HDP prior with H = N(0,1). Solid black line : 1 realization of G0. Dashed blue
lines : 20 realizations of Gj .
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• γ = 1, α0 = 100 : Here we have the same “very discrete” G0 realization, but now with a large α0. The Gj
realizations are tightly concentrated around G0.

Figure 2 also illustrates a number of Gj draws given a G0 draw, but with a 10-dimensional global base measure
H = Dirichlet (0.1, 0.1, ..., 0.1), which is the H used in our experiments below (see section 5). The analysis is the
same as in the case of H = N(0, 1) above, so we will not repeat it, except to mention a few interesting points:

• The Dirichlet(0.1,0.1,...,0.1) distribution is a symmetric distribution, but a sparse one which places most of
it’s mass at a few of verteces of the 9-dimensional simplex, i.e. in a given draw, most of the indeces will have
probabilities near 0, and only a few indeces will have appreciable values. Moreover, when γ = 1 only a few of
the θk locations in the stick-breaking representation will have significant weights βk (note: each θk is now a
10-dimensional vector of probabilities). This produces “non-uniform” probabilities in the final stick-breaking
sum - see the heavy black lines in the left panels of figure 2. However, when γ = 100 many weights and
independent locations contribute to the stick-breaking representation of G0, and this has the effect of making
the probabilities in the stick-breaking sum more “uniform” - see the heavy black lines in the right panels of
figure 2.

• Again, note how large values of α0 force Gj draws to be tightly clustered around G0, whether its for a small
or large value of γ.
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Figure 2: Sample draws from HDP prior with H = Dirichlet(0.1,0.1,...,0.1), dim=10. Solid black lines : 1 realization
of G0. Colored lines and point : 10 realizations of Gj .
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3.2 Polya Urn Sampling and the Chinese Restaurant Franchise

Draws from a hierarchical Dirichlet process can be obtained by an extension of the well known Polya urn scheme
[3], in which the infinite dimensional DP has been integrated out. The Polya urn scheme for a single DP is related
to a distribution on partitions known as the Chinese Restaurant Process (CRP) [1]. In the CRP metaphor, a new
customer (observation) arriving at the (one) restaurant is seated at an existing occupied table t with probability
proportional to nt, the number of customers seated at that table. With probability proportional to α0 (concentration
parameter of the DP), he is seated at a previously unoccupied, newly allocated table. Each table has a distinct dish
on it, and all customers at the same table share the single dish at that table. One can think of the distinct tables as
corresponding to the distinct θk ∼ DP (·) draws in a Polya urn sampling scheme.

The single restaurant CRP metaphor can be extended to a multiple restaurant setting known as the Chinese

Resturant Franchise (CRF). In this scenario, there are two Polya urn sampling schemes at work simultaneously :
one for the tables and one for the dishes served at the tables. A customer arriving at restaurant j will be seated at a
table based on the same Polya-urn sampling scheme outlined above for a single restaurant CRP. However, whereas
in the CRP a new distinct table always meant a new distinct dish, here another Polya urn draw is made to select the
dish for a new table. In the CRF, there exists a global menu of dishes shared among all restaurants, and a new table
is assigned one of the existing dishes k with probability proportional to mk, the number of tables currently serving
dish k over all restaurants j = 1, ..., J . With probability proportional to γ, a new, previously unseen dish is created
and assigned to the new table.

The formal CRF sampling equations for the HDP as defined in section 2.1 are shown below. The random
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variables (factors) φji correspond to customers (observations) and specify at which of the Tj tables in restaurant j
a new customer xji will sit; from section 2.2, we recall that the φji variables are distributed according to Gj . To
simplify our analysis, we introduce the Tj random variables ψjt that correspond to tables in restaurant j. The ψjt
are i.i.d. distributed according to G0, and each ψjt specifies the mixture component for table jt. Finally, we have
K random variables θk that correspond to dishes and specify the parameters of mixture component k; θk are i.i.d.
distributed according H . Note that one or more φji “map” to one ψjt, and that one or more ψjt “map” to one θk.

Given the above definitions, we can arrive at equation (9) by integrating out Gj (ala [3]) from equations (3) and
(2), thus obtaining a Polya urn representation of the DP used to assign the ith customer in restaurant j, φji, to some
table ψjt :

φji|φj1, ..., φji−1, α0, G0 ∼

Tj
∑

t=1

njt
i− 1 + α0

δψjt
+

α0

i− 1 + α0
G0 (9)

where njt is the number of (customers) φji’s associated with (table) ψjt, and Tj is the total number of tables in
restaurant j.

We obtain a Polya urn representation of the DP used to assign the tth table to some mixture component θk by
integrating out G0. Since the ψjt draws from G0 arise only from the top level DP (γ,H), we can immediately write
down the Polya urn sampler for the ψjt variables :

ψjt|ψ11, ψ12, ..., ψ21, ..., ψjt−1, γ,H ∼

K
∑

k=1

mk
∑

kmk + γ
δθk

+
γ

∑

kmk + γ
H (10)

where mk =
∑

jmjk, and mjk is the number of (tables) ψjt’s associated with (mixture component) θk, and K is the
total number of distinct θk’s.

Sampling using (9) and (10) is straightforward. To obtain samples of xji ∼ F (φji), first sample a value of φji
according to the proportions set out in (9). If a new table is required (RHS of (9)), then sample a mixture component
for the new table according to the proportions set out in (10). If a new mixture component is required (RHS of (10)),
draw the values for the new mixture component from H .

4 Inference

Given the Chinese Restaurant Franchise (CRF) sampling scheme outlined in section 3.2, we can implement an MCMC
(Gibbs) routine for posterior sampling (inference) in an HDP model given a set of observations. First, we restate
the definitions of all variables of interest. We have observations xji arising from a distribution F (φji), and let F (·)
have density f(·). Each factor φji is associated with the table tji, namely φji = ψjtji

. Also, each ψjt specifies (is
an instance of) the mixture component θk at table jt, namely ψjt = θkjt

. The prior for θk is H with density h(·).
The quantities njt, Tj , mk, and K are defined in section 3.2 above. Finally, define the set of all observation-to-table
assignments t = (tji : all j, i), the set of all table-to-component assignments k = (kjt : all j, t), and the set of all
distinct mixture component values θ = (θ1, ..., θK). Note that while θ contains actual values, t and k are simply sets
of index variables. A “-” superscript attached to a set of variables refers to that particular set with the superscripted
variable (index) removed.

The state of the sampler at any one point consists of the variables (t,k,θ) and the latest values of the concentration
parameters γ and α0. One iteration of the sampler consists of : (a) for all (j, i), sample tji, (b) for all (j, t), sample
kjt, (c) for all k, sample θk, and finally (d) update γ and α0.

Sampling t. To sample a value for tji we need an expression for the conditional posterior for tji given the
remainder of the variables. Therefore we need : (a) the conditional prior for tji and (b) the likelihood of generating
xji. The conditional prior is just equation (9). The likelihood of xji given an existing tji = t is just f(xji|θkjt

); the
likelihood given a new table tji = tnew is f(xji|θkjtnew ), where θ for the new table, θkjtnew , is drawn according to
equation (10). Combining the conditional prior and likelihood we obtain the form of the conditional posterior as in
equation (11) below.

p(tji = t|t−ji,k,θ,x) ∝

{

α0f(xji|θkjtnew ) if t = tnew

n−i
jt f(xji|θkjt

) if t is previously used
(11)
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In our implementation of the sampler, we maintain a data structure of all table and component assignments rep-
resented by (t,k), as well as the component values θ. If after updating a particular table njt = 0, i.e. table t is
now empty, we remove this table from our data structure. If as a result of removing table t, the mixture component
associated with this table is no longer associated with any table, i.e. mkjt

= 0, we also delete component kjt from
the data structure.

Sampling k. To sample a value for kjt, we first draw a value for θnewk ∼ H . To arrive at an expression for the
conditional posterior for kjt given the rest of the variables, we start with the conditional prior given by equation
(10). The data likelihood at table t given component k is given by

∏

St
f(xji|θk), where St is the set of observations

at table t, St : {i : tji = t}. Combining the prior and likelihood gives us the conditional posterior in equation (12)
below.

p(kjt = k|t,k−jt,θ,x) ∝

{

γ
∏

xji∈St
f(xji|θknew ) if k = knew

m−t
k

∏

xji∈St
f(xji)|θk) if k is previously used

(12)

Sampling θ. The conditional posterior for each mixture component k only depends on the observations associated
with component k. The prior density is given by h(θk), and the data likelihood by

∏

ji∈Sk
f(xji|θk), where Sk is the

set of observations (in all groups) associated with component k, Sk : {ji : kjtji
= k}.

p(θk|t,k,θ−k,x) ∝ h(θk)
∏

xji∈Sk

f(xji|θk) (13)

Sampling γ, α0. Teh et al. also derive expressions for posterior sampling of the concentration parameters γ
and α0. We have implemented those routines in our sampler, but we do not review them in detail here. Posterior
sampling for γ is identical to the auxiliary variable approach of Escobar and West [5]; posterior sampling for α0 is a
slight modification of the same basic approach.

MCMC inference based on the Chinese Restaurant Franchise is relatively simple to implement and understand.
Furthermore, since (a) it updates the mixture component for a given table and thus for multiple observations
simultaneously, and (b) it re-mixes the values of each component at each iteration, it may lead to better mixing
and convergence. One can also speed up the above algorithm by integrating out θk in equations (11) and (12), and
skip sampling θ altogether. Also the CRF approach is not the only possibility for MCMC sampling in HDP models.
Another approach, based on the representation of the HDP as the infinite limit of finite mixture models, is detailed
in [7]; however, the authors experimentally show that neither of the two sampling schemes consistently outperforms
the other.

5 Experiments and Results

5.1 Simulated Data

We experiment with inference in the topic modeling setting using a small set of simulated data in order to better
understand the behavior of the model, and to measure how well it could recover the true data generating distributions
(topics). We fixed our vocabulary size, V , at ten (10) unique words, and generated a data set consisting of J = 6
documents with nj = 80 or 100 words arising from 2 - 3 mixture components per document. The procedure was as
follows:

• We fixed the number of topics at three (K = 3) : θ1, θ2, θ3. Each θk, k = {1, 2, 3}, is a parameter vector of a
10-dimensional multinomial distribution over the words (word indeces) in the vocabulary. Each θk was given a
known fixed value for this experiment. Figure 4 shows the true values of each multinomial mixture component
θk.

• We fixed the global topic proportions at π = [0.4, 0.3, 0.3].

• For each document j = 1, 2, ..., J :

– For each word i = 1, 2, ..., nj:
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∗ We sampled a topic (index) φji ∼Multinomial(π
′

j), where π
′

j = π with one of it’s values possibly set

to 0, i.e. π
′

jk ← 0, to simulate documents composed of just two mixtures : documents 2 & 5 and 3 &
6 are only composed of mixture components (2,3) and (1,3), respectively.

∗ We sampled a word (index) xji ∼Multinomial(θφji
)

The data (word) distribution in each simulated document is shown as a histogram in Figure 3.

Figure 3: Simulated data X. Actual word distributions in documents.

5.2 Posterior Estimates

We implemented a Gibbs sampler (in R) for posterior inference based on the Chinese Restaurant Franchise approach
as described in section 4, including sampling for the concentration parameters γ and α0. We ran for 1000 burn-
in iterations and collected data for 4000 subsequent iterations. The priors for the concentration parameters were
γ ∼ Gamma(2, 4) and α0 ∼ Gamma(1, 1), favoring smaller values of γ and α0. Our global base distribution was a 10-
dimensional symmetric Dirichlet distribution, namely H = Dirichlet(1/V,1/V,...,1/V), V = 10. The results are shown
in figures 5, 6, 8, 9, and 10. The R code is available from www.numberjack.net/download/ucsc/classes/ams241/project/R.

Figure 5 shows the point estimates θ
(est)
k of the three components θk, k = {1, 2, 3}. Since we are using simulated

data and we actually know what the truth is, i.e. for each xji we know the true φji = kxji
, we can “cheat” and

compute each θ
(est)
k as follows:

• For each observation xji, compute the mean of the θ values associated with this observation over the B Gibbs

sampling iterations, namely :
¯
θ
(B)
ji = 1

B

∑B

b=1 θ
(b)
ji

• Compute θ
(est)
k = 1

|Sk|

∑|Sk|
xji∈Sk

¯
θ
(B)
ji , where set Sk is the set of observations xji whose true component (per the

simulated data) is component k.

Comparing figures 4 and 5 (true values versus estimates, respectively), we see that inference was able to recover
the relative proportions in the parameters of each component quite well : within each component, the estimated
parameter values seem to be scaled (smoothed) versions of the true values, with “peaks” and “valleys” in the correct
places. Furthermore, at each word index point v, we were also able to recover the relationship between different

8



Figure 4: True word distributions per topic θk, k = {1, 2, 3} used to generate simulated data X.
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Figure 5: Estimated word distributions per topic θk, k = {1, 2, 3}, for H = Dir(0.1, 0.1, ..., 0.1).
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components : for each index point v, the component having the highest estimated parameter value at v is the same
one which has the highest true parameter value at v. Of course had this been a real (non-simulated) data set, we
would not have been able to do this kind of component comparison.

9



5.3 The Role of H

In figure 6 we plot the posterior distributions of concentration parameters γ, and α0. We also show the distribution
of the number of unique components N∗ and the average number of observations per component. We see that the
expected number of components is quite high, over 100, and on average (over the MCMC iterations), the “most
populous” component only has approximately 5-6 observations associated with it. These results are in line with the
large mean posterior value of γ.

Figure 6: Posterior distributions of concentration parameters γ, and α0, as well as the distribution of the number of
unique components N∗ and the average number of observations per component.

This may be explained by looking at the form of our global base distribution H = Dir(1/V, ...., 1/V ), where
V = 10. As mentioned in section 3, this type of symmetric Dirichlet distribution (of dimenstion V ) is “sparse”, i.e.
it places most of it’s mass at a few of the verteces of the V − 1 dimensional simplex, and draws from it exhibit little
uniformity in their values. Therefore, in order to adequately model (support) a given document’s actual mixture
of topics - the more “uniform” true θj’s pictured as black bars in figure 8 - a large number of such “non-uniform”
components are required. However knowing this, suppose we try to decrease the number of components by making
the draws from H more “uniform”, specifically let H = Dir(1, 1, ...., 1). The problem we run into is since the Dirichlet
distribution is conjugate to our Multinomial sampling distribution, the parameters of H effectively act as prior data

sample sizes, and larger parameters (e.g. 1 vs. 1/V ) imply more strength to the prior H than to the data, and the
posterior differences between components are smoothed out - compare figure 7 with our previous estimates in figure
5. The only choice now is to get more data, which is not typically very feasible or even possible.

Figure 8 shows the point and [10%,90%] interval estimates of the posterior mean of p(θj |data), namely θ
(est)
j =

E[θj |data], as well as the true values of θj computed as θj =
∑K

k=1 π
′

jkθk (see section 5.1). The θ
(est)
j values are

computed in similar fashion to the θ
(est)
k values described above, i.e. θ

(est)
j = 1

nj

∑nj

i=1

¯
θ
(B)
ji , where

¯
θ
(B)
ji is the mean of

the θ draws associated with observation xji over the B Gibbs sampling iterations. In addition to the point estimate
of the mean, we also compute and plot the posterior [10%,90%] intervals of the mean as dashed lines in Figure 8.
Figure 8 shows that the posterior interval estimates do a good - but not great - job of recovering the true θj values
: in each document, there is at least one true θj [v] value that lies outside the posterior [10%,90%] interval for the
given word index v (e.g. see v = 1 in document 2); nevertheless, the majority of estimates do cover the true values.
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Figure 7: Estimated word distributions per topic θk, k = {1, 2, 3}, for H = Dir(1, 1, ...., 1).

1 2 3 4 5 6 7 8 9 10

v (word index)

p[
v]

0.
00

0.
10

0.
20

0.
30

k_1
k_2
k_3

5.4 Posterior Predictive Estimates

Given our B posterior samples from p(t,k,θ|data) associated with each document j, we can obtain an estimate of
the mean (expected value) of the posterior predictive distribution p(θj0|data) - the predictive distribution according
to which a new observation xj0 will be drawn as xj0 ∼Multinomial(θj0).

We estimate E[θj0|data] as follows. First, we note that at each iteration b of the sampler, the state of the

sampler reflects a unique configuration (t(b),k(b),θ(b), γ(b), α
(b)
0 ) of a Chinese Restaurant Franchise with data-to-

table assignments given by t(b), table-to-component assignments given by k(b), and distinct component values given

by θ(b). Therefore at each iteration b, we can sample a predictive θ
(b)
j0 value as outlined in section 3.2 using the

appropriate values of n
(b)
jt ,m

(b)
k , α

(b)
0 , γ(b),θ(b). Specifically, for each iteration b per document j, draw a new value for

θ
(b)
j0 corresponding to a new observation xj0 as follows. First, draw a new table assignment φ

(b)
j0 according to:

φ
(b)
j0 ∼

T
(b)
j
∑

t=1

n
(b)
jt

nj + α
(b)
0

δ
ψ

(b)
jt

+
α

(b)
0

nj + α
(b)
0

G
(b)
0

If the table assignment ends up being one of the existing tables, we’re done : θ
(b)
j0 will assume the value of the mixture

component corresponding to this table. If the table assignment ends up being a new table, we draw a value for θ
(b)
j0

from G
(b)
0 :

θ
(b)
j0 ∼ G

(b)
0 (.) =

K(b)
∑

k=1

m
(b)
k

∑

km
(b)
k + γ(b)

δ
θ
(b)
k

+
γ(b)

∑

km
(b)
k + γ(b)

H

Note that the value of θ
(b)
j0 for the new table could come from an existing component (with probability proportional

to m
(b)
k ), or it could be a completely new draw from H (with probability proportional to γ(b)).

Finally, we average over the B draws of θ
(b)
j0 to compute E[θj0|data], and show the results in Figure 9, where we

compare E[θj0|data] with the actual simulated data distribution (as a normalized histogram). Figure 9 shows that
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Figure 8: True θj (black) vs. point and interval estimates θ
(est)
j = E[θj |data] (yellow), j = {1, ..., 6}.
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in each document j, the values of E[θj0|data] at word indeces v = 1, .., 10 - which are effectively parameters of a
Multinomial(θj0) distribution - line up well with the actual data generating distribution in that document.

Furthermore, having already obtainedB θ
(b)
j0 draws above, we can now sample a new data value x

(b)
j0 ∼Multinom(θ

(b)
j0 )

at each iteration b. We use these B x
(b)
j0 draws to produce a density estimate of the posterior predictive distribution

for a new observation in each document : p(xj0|data) - this is shown figure 10 (red curve) along with the density
estimates of the data generating distribution in each document (black curve). Figure 10 shows that in each docu-
ment, the shape of p(xj0|data) compares well with the actual (simulated) data density. The “peaks” and “valleys” of
p(xj0|data) are at the expected locations and with a few exceptions, line up well with the data density. The largest
discrepancy seems to be that the predictive density estimates have sharper peaks (e.g. documents 3 and 5) than
their data density counterparts - this can be attributed to two factors : one, the strong peaks present in E[θj0|data]
(see figure 9) from which xj0 are drawn, and two, the large number (1000) of xj0 samples taken.

6 Conclusion

In this report we reviewed a number of ideas presented by Teh et al. in their work on hierarchical Dirichlet process. In
addition, we implemented our own MCMC based sampler for HDP inference, and used it to study a small simulated
data set. This report is by no means the complete story with respect to hierarchical Dirichlet processes, but it does
explain the fundamental concepts in detail and provides a number of examples to illustrate the theory.

Hierarchical Dirichlet processes provide a suitable approach to clustering problems in grouped data, where the
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Figure 9: Normalized data histogram (black) vs. E[θj0|data] (yellow), per document j = {1, ..., 6}.
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number of clusters is not known nor specified ahead of time, and where we would like to share clusters among
the groups of data. The use of a Dirichlet process at the top level of the model specification frees us from apriori
specifying the number of clusters (components in a mixture model) - we can infer the distribution for that quantity
from the data. The use of group-specific Dirichlet processes at the next level of the model - which have as their base
measure a draw from the top level DP - enables the sharing of components among the groups.

HDP models seem to be a natural fit to topic modeling in the IR domain. It is not difficult to imagine that in a
corpus of documents, there is a large but countable set of topics, that each document may be a different mixture of
one or more topics, and that the topics are shared among all documents in the corpus. HDP inference in our small
simulated data set with distinct topics worked out well. However, trouble creeps in when one tries to actually use
the inferred topics in isolation (something we did not explore in this report); specifically, the issue of how granular

should a topic be? For example, one set of parameters in the HDP model may yield very “broad” topics that
refer to “sports”, “politics”, etc., whereas a different set of parameters may yield very “specific” topics that refer
to “baseball”, “tennis”, etc. The values of the parameters will be application dependent, but it is not clear how
to set them (or their priors) to achieve the desired level of granularity. Finally, inference for HDP models in this
scenario is straightforward given the Chinese Restaurant Franchise and the conjugacy inherent in the data model.
However, Gibbs sampling as described above may be too slow given a real world document modeling scenario, where
one has 100,000+ documents and a vocabulary of 20,000+ words. Nevertheless, it remains an intriguing model for
such hierarchical modeling problems.
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Figure 10: Data density and histogram (black) vs. density estimate of predictive distribution (red) for new word
xj0 ∼ p(xj0|data).
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