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1 Gibbs Sampling Equations

The model we are studying is:

Yilbi, & ~ kn(yi; 0, 0), i=1,...n
0;|G~G, i=1,..,n
Gla, i, 7 ~ DP(a,Gg = N(p, 7))
a ~ Gamma(ay, by,)
o~ N(ay,by)
7 ~ InvGamma(a,2, by2)

¢ ~ InvGamma(ag, by)

1.1 Posterior 6,

qoh(Bild, 7% yi) + ) n; 4504 (6:)
=1

POy Buk # Y0, 6,11, 72, data) =
qo + Zn;%'
j=1
where
¢ = N(yi; 05, ¢)
qo = Oé/z k(yis; 03, ) go(0:l s, 7°)d6;
= [ N b NG )i

= aN(yi; p, & + 72



and
h(0;o, MTQ,yz‘) = C - kn(yil0:, #)go(0:], 7'2)

= C' N(ys; 0;, ¢)N(‘9i‘u>72)

- N(ezv m, U)
where

_ Iu/7—2 —+ yl/¢ v — 1
1/m2+1/¢ 1/7241/¢
So 6; will either be a new distinct 6 value drawn from N(6;; m,v) with probability proportional

to qo, or equal to an existing #; value with probability proportional to n; g;.

1.2 Posterior 0;

p(0%|w, n*, p, 72, 6, data) = C' - H k(yil05, ¢ ] 9003111, 7°)

L icwi=j

=C- H N yzw*a ] (‘9;‘/%72)

L i:w;=j
= N(0;;m",v") (2)
where
P _WT AN 1
172 +n;/¢ 1/m%+n;/¢
So for each individual cluster (component) j, we indepedently draw a value for ¢, from the
distribution defined in equation [2].

1.3 Posterior ¢

n

(916, data) = C - p(¢) [ [ k(vil6:, ¢)

i=1

= C - InvGamma(ag, by) H N (yil6s, 8)

i=1

= C- g eap(—by/) [ [ 5 l/zexpL;( —9z>]
=1

= C - ¢ (astn/2HD) gy b¢/¢)explz 2—;( —92)]

astn nuv
B /mwl z <b¢’ 2 )]

= InvGamma(as + n/2,bs + nv/2) (3)



where

1.4 Posterior j, 7>

p(p, 7%160%) = C - p(u)p(7?) Hgo(G;*!u, )

n*

= C - N(u|ay, b,) InvGamma(r?|a,z2, by2) H N (6 |p, 7°)
i=1
We are not in a conjugate prior setting in this case for p(u, 720), but we can easily compute
the conditional distributions needed for Gibbs sampling:

n*

p(:u|7-27 0*) =C- N(:u|a’u7 b#) H N(Q;LU,, 7—2)

i=1
= N(m,, Si) (4)
where
_ /bt n*0* /72 2 o
H 1/bu+n*/7_2 K 1/bu+”*/72

where n* is the number of distinct #* values and 0* is the mean of the distinct #* values.

(7|, 0°) = C - InvGamma(7?|a,2, by2) H N(0% |, %)
i=1
Using the same algebraic manipulation as was done for the posterior of ¢ above, we have:
p(7%|u, 0°) = InvGamma(a,> +n*/2,b2 +n*v/2) (5)

where

n*

w'v =) (6; —

i=1

1.5 Posterior «

Here we just re-iterate the sampling scheme for o using the auxiliary variable scheme outlined by
Escobar and West, 1995. First we draw 7 from :

p(n|a, data) = Beta(a + 1,n) (6)
Define probability p = (a, +n* —1)/(n(bs —log(n)) + @ +n* — 1), and draw:
with probability p : aln,n*, data ~ Gamma(a, + n*, b, — log(n))
with probability 1 —p : aln,n*, data ~ Gamma(as +n* — 1, b, — log(n)) (7)



1.6 Overview of Gibbs Sampling Scheme

A brief overview of the Gibbs sampling scheme is shown below. In our sampler, we maintain a state
structure which consists of the 6; values, the cluster (component) membership index for each y;,
and the values of all the parameters a, i, 72, ¢.

1.6.1 Initialization

At initialization, we assign each of the N y; observations to belong to a different cluster, thus
starting out with N separate clusters (components). Each cluster is initialized with a 67 drawn from
go = N(u,7?) distribution, given the starting values of u, 72.

1.6.2 MCMC Simulation

We typically run for 1000 burn-in iterations, followed by 4000 monitoring iterations. We arrived
at the 1000/4000 values after preliminary experiments that showed that increasing iterations (e.g.
2000/10000) did not appreciably change the results, indicating that the chain had reached conver-
gence.

The sampling scheme consists of :

e Fori = 1..n, sample 6; from the mixed distribution defined by (1). Adjust cluster (component)
membership indeces of the data if an existing component was dropped or if a new component
was added.

For j = 1..n*, sample 07 from (2).

Sample ¢ from (3).

Sample p|7? from (4) and 72|p from (5).

Sample « using (6) and (7).

1.7 Predictive Distribution Calculations

The posterior predictive distribution for a new observation 6, is given by the Polya-Urn scheme:
(10,6, 0,6) = —— Gofll6) + —— 3" ;00 ®)
n-, ) , O = - ;06
e a+n O a+n i 7050
The posterior predictive distribution for a new yq is given by :

p(yo‘data) ://k(yo;007¢)p(90|n*7w70*7a7¢>p(n*7w70*7a7¢|data> (9)

Thus given B sets of samples from our MCMC output, we can obtain samples from p(yg|data) as
follows: for each set b of posterior parameter values in the MCMC output, first draw 6y, from
p(Ooln*, w, 0%, a, ), and then draw yop from p(yo|6op, #s) = N(+; 004, Pp)

Samples from the prior predictive distribution p(yg) are obtained as follows:

4



Draw (p,7%) from p(p)p(7?). Since p(u) and p(7?) are independent of each other, p(u,7?)
does not form a conjugate prior for Gy = N(p,72). So we independently sample b times:

72 ~ InvGamma(a,2,by2)
My~ N(auv bu)
0o ~ Go = N(u,7%)

Yoo ~ [ N(yop; opld)p(P)dd = t,(0p, s%), a t distribution with v = 2a, degrees of freedom,
mean 6, and scale s? = by/a,

The derivation of yo, ~ t,(0yp, s?) is shown below:

/N(ya 9’¢)1G(¢, a, b)d¢ = / \/%gbexp [;_;(y _ 9)2] %¢(a+l)elp [;] Cl¢

1
=C. /d) (a+1+1/2) €Ip[2¢ ((y i Q)Q + 2()) do
Letting z = %
A
"=
A
|do| = -
where A= ((y—0)*+2b) we get

—(at+1+1/2)
_ é = ]id
= 2 ETP|—Z 9.2 z

L\ e
=C- ( > (“+1/2’1)exp(—z)dz

A (a+1/2)
=C- ( > I'(a+1/2)

) —(a+1/2)
=C-T(a+1/2) lé(y—H)Q +0b

(y —0)?

1
R

—(a+1/2)
=C-T(a+1/2)b @t/ ]

which we recognize as the kernel of a t-distribution. Letting a = ay = v/2 and b = by = vs?/2
and filling in the constants, we get the familiar form of the t-distribution, namely:

_ v+l

(y — 9)2] i

Yo,p ~




