
Computational Community Interest
for Ranking

Xiaozhong Liu

School of Information Studies
Syracuse University, Syracuse NY 13210

 xliu12@syr.edu

Vadim von Brzeski

Yahoo! Inc,
Santa Clara, USA 95054
vadimv@yahooinc.com

ABSTRACT
Ranking documents with respect to users' information needs is a
challenging task, due, in part, to the dynamic nature of users'
interest with respect to a query, which can changes over time. In
this paper, we propose an innovative method for characterizing
the interests of a community of users at a specific point in time
and for using this characterization to alter the ranking of
documents retrieved for a query. By generating a community
interest vector (CIV) for a given query, we measure the
community interest by computing a score in a specific document
or web page retrieved by the query. This score is based on a
continuously updated set of recent (daily or past few hours) user-
oriented text data. When applying our method in ranking Yahoo!
Buzz results, the CIV score improves relevant results by 16% as
determined by real-world user evaluation.

General Terms
Algorithms, Human Factors, Experimentation

Keywords
Information Retrieval, Ranking, Topic, User, Blog, Community
Interest, LDA

1. INTRODUCTION
Ranking is a key step in Information Retrieval (IR) systems. All
ranking algorithms work to find the most important documents
and show them to users at the top of the search results.

Generally, existing ranking algorithms measure the “importance”
of the document in the search results in several different ways,
such like the distance between query and document in a high
dimension vector space, probability of the document generating
the query, social network popularity in the retrieved result and so
on.

Two basic hypotheses are common in the existing algorithms: first,
the query contains the key information for ranking, which
provides hints used to discriminate the important results from
others. Second, some unique features on the document or user side
can help rank the results, such as citations, page links, or user
behavior data.

There are also some limitations regarding these hypotheses. First,
web queries tend to be short (Jansen, 1998; Silverstein, 1999) and
the algorithms have relatively limited information on which to
base their ranking. At the same time, some additional ranking
information, such as links, citations or user behavior data can be
biased. For instance, a blog posting getting a high number of
citations or clicks may due to two different reasons: the content is
interesting (it should get the high rank), or the blogger is popular

in a certain community (the content may be pedestrian and does
not deserve the high rank outside the local community). The
content-free ranking algorithm will favor these postings no matter
which scenario they belong to.

In this paper, we use “community interest” as an indicator to
represent this importance score; namely, we compute a measure
of the interest level in the global community in a specific retrieved
document for a given query at a given time. Instead of employing
a large number of users to make judgments as to what is
interesting and what isn’t, we use user oriented text data (such as
daily or hourly blog postings or user selected news text) to
represent users’ interests, and the text is represented by different
features. By using a popular topic-modeling algorithm (LDA), we
discover topics of community interest in the user text data as
probability distributions over the space of features. Each topic is
then weighted by historical text data from the community. Finally
we construct the CIV as a vector of weighted topics to represent
the current interests of the community. For each document in the
search results, we also infer a score (using the precomputed
probability topic models) that is proportional to the level with
which the community may be interested in this specific document
given the query. This score, the CIV score, is then used for
ranking the entire set of search results. In our algorithm, each user
oriented text is viewed as an “agent” of user, and the real time
topics of the text will be used to “vote” for the important
documents over others.

Some terminologies mentioned in this paper list as following:

Term Definition

User-oriented
text

The text data generated by an end-user, such as blog postings,
user selected news stories or news comments

Posting A document generated by a user, an instance of user-oriented
text

Protagonist The main actor in the posting. A protagonist in this paper is not
necessarily a person; instead, it is a user oriented entity from
query-log

Topic A (probability) distribution over a space of features

Community
Interest

A list (vector) of threads of interests (topics) with respect to
the target protagonist

Community
Interest Vector

CIV is the weighted topics’ score corresponding to the current
(real-time) cognitive global community interest

CIV ranking The ranking algorithm based on the real-time CIV inference
score

Tab1. Terminology used in this paper

2. RELATED WORK

A number of techniques have been developed for ranking
retrieved documents and web pages for a given query. The

classical method is content-based or query-dependent ranking,
which is based on the similarity or probability of matching
between query and target document. In web search, additional
ranking information can be used, such as the hyperlinks between
web pages, anchor text, user behavior data and the popularity of
the page.

Content based ranking

Content based method rank the documents according to their
relevance to a given search query. In vector-space content based
ranking, the ranking score of a document with respect to a query
is determined by its “distance” to the query vector (Kobayashi &
Takeda, 2000), such like vector space model (Salton & Yang,
1973). In order to reduce the dimensionality of the vector and to
represent “latent” word similarities, Latent Semantic Indexing,
LSI, (Deerwester et al., 1999) is used to project the high
dimensional word-document matrix into a lower one. Similarly,
language models (Lafferty & Zhai, 2001) and probabilistic models
(Joneset al., 1976) calculate the probability of a document
generating the query and the probability of relevance based on the
query and the document respectively. Related to our work, a topic
based language model using LDA has been studied for ad-hoc
information retrieval by (Azzopardi et al, 2004, Wei& Croft
2006). Recent studies combined existing ranking algorithms by
machine learning to create new ranking functions trained by
evaluation method, which is learning to rank (Trotman, 2005). In
this approach, user interest and requirement are represented by
query terms.

Linkage based ranking

In the WWW environment, the network structure of a hyperlinked
network can be a rich source of information about the content of
the pages, providing an effective means to understand it. The
related ranking algorithms are like PageRank (Page et al., 1998)
and HITS (Hypertext Induced Topic Selection) algorithm
(Kleinberg, 1999), which are based on traditional citation analysis
and social network analysis. Some more recent research combines
these two approaches together and uses both content and
hyperlinks to rank the search results. For instance (Haveliwala,
2003) worked with topic-sensitive PageRank, which created a list
of PageRank vectors by using a set of representative topics in
order to capture the context of each hyperlink. Similarly, a
probabilistic model was used by (Richardson&Domingos, 2002)
to generate PageRank score for each possible query term. In this
approach, user interest is partially represented by network
connected to the target document.

User behavior based ranking

User behavior data have been used and proved as an effective
indicator for ranking. The relationship between implicit and
explicit user data was studied by (Fox et al 2005), and two
different Bayesian models were built to correlate different kinds
of implicit measures and explicit relevance judgments for
individual page visits and entire search session. Joachims (2002)
employed clickthrough data to learn ranking function by using
SVM, and his work proved that clickthrough data is a significant
predictor of user interest for ranking. Similarly, Agichtein et al
(2006) incorporated noisy user behavior data into the search
process, and the user data were used to train the ranking functions.

In this approach, user interest is partially represented by statistical
user behavior data.

In this paper, we are focusing on representing user interest from
the topic distribution over user generated real-time text data,
which is separated from the retrieved results. Instead of using
statistics of user behavior data, we rank the documents in terms of
the content of large amount of real time user generated text.

3. COMMUNITY INTEREST RANKING

In the Web 2.0 context, a user may generate different kinds of text
data, such as blogs, selected news, or comments to express their
opinion. We hypothesize that a large amount of user-oriented data
can represent the overall opinion of the community. A simple
example is the 2008 presidential election. As the following
diagram shows, the number of blog postings about “Obama” and
“McCain” changed over time (data from Yahoo! Buzz,
http://buzz.yahoo.com, from 2008-10-11, before election, to 2008-
11-10, after election).

Fig 1. 2008 president candidates related blog postings

It is shown that before election day (2008-11-4), the numbers of
postings about the two candidates are almost equal, but after the
election, because of the results, the gap between the winner and
the loser significant increased, representing the situation in the
real world. Similar blog research about the 2004 election can be
found in (Adamic & Glance, 2005).

In this paper, there are three central questions to answer:

1. How can we accurately extract community interests via
user oriented text data for a given “protagonist”?

2. What are multiple interest threads of a protagonist, and
how can we weigh each interest (thread of discussion)
to mirror the real world community’s requirement?

3. How do we use this computational community interest
to rank (or re-rank) the documents in the search result?

The protagonist defined in our paper is the main actor (not
necessarily a person) of a user generated posting. And the
protagonist list is generated through query log. One protagonist
can correspond to one query or multiple similar queries. Query
similarity is well studied in different researches, such like (Wen et
al, 2002, Baeza-Yates et al., 2004).

In this section, we will describe our method and try to answer the
aforementioned questions.

3.1 Community Interest Extraction

If we index user oriented text by protagonist, and each protagonist
represents one or several similar hot (i.e. high frequency) queries
identified in query logs, then for each protagonist, we can collect
a number of user oriented postings for a period of time (e.g. today,
or past few hours). We call this collection of postings the
“Current Protagonist Collection” (CPC). When the number of
postings increases, the representability of this collection (and of
community) also increases.

We define the community’s interest toward each protagonist as a
vector – the Community Interest Vector (CIV), and each
component of the vector represents a (normalized) “topic” related
to the target protagonist. This interest vector may change in two
different ways over time:

1. Vector space change – Since each dimension in the
vector represents a topic of interest about the target
protagonist, a change in the vector space demonstrates
that either a brand new interest topic appeared or an
existing interest topic faded out;

2. Weight change only – This means that the community’s
interest topics are stable, but the degree of interest
(weight) changes over time. In other words, the
community’s interests shift from one topic to another.

If we use the protagonist “Obama” as an example, when n = 3, the
CIV of “Obama” for the 1st of Aug, Oct, and Dec of 2008 may
look like following:

Aug 1st 2008 Oct 1st 2008 Dec 1st 2008

Fig 2. Three dimensional topic space change

In August, the community was interested in three different topics
about “Obama”: 1. Obama’s campaign 2.the relationship between
Obama and Clinton 3. the relationship between Obama and
McCain. The weight of the “second topic” is larger than the other
two since the community was more interested in this topic at that
time. In October, these topics may still exist, but the weights of
first and third topic have increased, while the weight of the second
has decreased. In December, after the election, the third topic is
replaced by the “economy”, and the weight of each topic also
changes.

Our algorithm uses real-time user oriented text data as the corpus
to extract and weight CIV, and each item in CIV represents a
current topic, which is a probability distribution over features.

Fig 3 shows how CIV algorithm ranks the documents generally.
In the simplest way, each query corresponds to one protagonist.
The query is sent to both indexed documents and user oriented
text collections. The algorithm will extract the CIV from current
protagonist collection based on topic extraction and topic
weighting modules, and finally the CIV will rank the candidate
retrieved results against current topic distribution.

Fig3. CIV algorithm

3.2 Topic Extraction with LDA

We hypothesize that the postings in the CPC incorporate a fixed
number of latent topics and we proceed to extract these topics. A
topic in our model is a probability distribution over features.
There are various techniques to perform this topic modeling step,
and we chose an off-the-shelf public domain algorithm called
Latent Dirichlet Allocation (LDA), (Blei, Ng, & Jordan, 2003).
In a nutshell, LDA is similar to probabilistic Latent Semantic
Analysis(Hofmann, 1999) in that it decomposes the posting-by-
features matrix into a document-by-topics matrix, � , and a topics-
by-features matrix,

�
.

Fig 4. LDA topic extraction

LDA is a generative probabilistic model in the hierarchical
Bayesian framework, and the topic proportions are randomly
drawn from a Dirichlet distribution. As the above diagram shows,
traditional document indexing systems represent each document
as a vector of features. By using LDA, the document-feature
matrix can produce two different matrices: � contains the
document (posting) – topic probability distributions, i.e. each row
represents the probability of topic given the posting P (topic |
posting).

�
 contains the topic-feature probability distributions, i.e.

each row represents the probability of each feature given the topic
P (feature | topic).

In the LDA model, the document corpus is generated by the
following process:

Obama Campaign

 Clinton

 Economy

Obama Campaign

 Clinton

 McCain

Obama Campaign

 Clinton

McCain

1) For z = 1:K, where K is the fixed number of latent topics, draw
parameters for a multinomial distribution φz for each topic z from
a Dirichlet distribution with hyperparameters � . φz models the
relative frequencies of features in topic z.
2) For each document d, draw parameters for a multinomial
distribution θd from a Dirichlet distribution with hyperparameter
� . θd models the relative frequencies of topics in document d.
3) For each feature (e.g. word)w in document d,

a) Draw one topic indicatorzn from the
multinomial distribution θd .

b) Given zn, draw a feature (word) w from the

multinomial distribution φzn.
An example of an LDA result from a user oriented text collection
is shown as following:

SSwwiimmmmiinngg TTooppiicc RRuussssiiaa WWaarr TTooppiicc GGyymmnnaasstt TTooppiicc
Wiki:Michael_Phelps 0.024279 georgia 0.008965 Liukin 0.011639

Wiki:Phelps 0.017913 Wiki:Russia 0.007939 Wiki:Nastia_Liukin 0.011465

Swimming 0.011785 spanish 0.00598 Wiki:Gymnast 0.010945

Wiki:Gold_medal 0.011387 russia 0.005513 Wiki:Shawn_Johnson 0.009469

Wiki:Swimming 0.010114 war 0.005047 Gymnastics 0.007647

200m 0.009398 Wiki:Georgia_U.S._state 0.003611 Johnson 0.00565

Swim 0.009398 states 0.003368 Age 0.005477

Record 0.008443 russian 0.002342 Nastia 0.004869

Phelps 0.008443 georgian 0.002342 Gymnast 0.004782

Meter 0.008045 bush 0.002248 Born 0.003828

Freestyle 0.007409 Wiki:George_W._Bush 0.002062 Young 0.003567

Wiki:World_record 0.006215 soviet 0.001968 http 0.003567

Relay 0.005021 ning 0.001968 Womens 0.003307

Water 0.004066 fight 0.001782 TVS:nastia 0.003307

rebecca_soni 0.003668 did 0.001782 Old 0.00322

100m 0.003509 Wiki:Spain 0.001782 Father 0.00322

Swimmer 0.003509 iraq 0.001688 chinese_gymnasts 0.00322

Wiki:Medley_swim 0.003509 oil 0.001595 Years 0.003133

Wiki:Ryan_Lochte 0.003509 russias 0.001595 Wiki:Uneven_bars 0.00295

Jones 0.003271 south 0.001502 Wiki:Gymnastics 0.002786

Tab2. Three topic-feature distribution example

The above table shows three sample topics extracted from the
2008-08-11 blog posting collection (1086 postings, number of
topic = 30, protagonist = “Olympic”). Each topic is represented
by features (bag-of-words + entities + Wikipedia ID – see a
detailed description in the next section), and the probability of the
feature given topic P(feature | topic). We printed the top 20
features of each sample topic.

Based on the topic-feature probability distribution, we can use the
learned LDA model to infer the topic distribution in a new
document. Given a new unseen document, by inverting the LDA
generative process, we can obtain the topic probability
distribution in the new document. Each dimension represents the
relative frequency (probability) of each topic in the document
belongs:

)}|()......|(),|({)(21 xnxxx doctopicPdoctopicPdoctopicPdocTV =

TV(docx) is the topic vector of the given document X, while the
P(topicm|docx) score represents the probability that topicm is a
correct descriptor of the given document.

3.3 Feature Space

In any information retrieval and text mining system, features are
important as the units, which represent the indexed document and
corpus. However, compared with traditional retrieval systems and
web search engines, the quality of user-generated text (such as
blog postings) is low, due to spelling mistakes, grammatical
mistakes, and spoken language expressions. These issues pose a
challenge to the performance of existing NLP, IR, and mining
algorithms. Furthermore, users tend to use different terms and

phrases to express the same thing, which not only increases the
dimensions of the feature space, but also misleadingly divides the
same feature into different ones. Last but not least, we find users
sometimes write people’s name or locations without
capitalization, and this behavior removes one of the most
important features for entity recognition algorithms.

In order to solve the aforementioned problems, we need to design
an algorithm to:

1. Recognize all the possible entities from user oriented
text data, even in the presence of grammatical and
spelling mistakes.

2. Project the low quality entities into a “clean” Wikipedia
ID, which has the closest semantic distance with the
entity.

In our experiment, we find using the correct type of features to
represent user generated text can improve the system
performance. However, this section is somehow independent from
our algorithm. So if you are not interest in the feature
representation, please jump to section 3.4.

Entity recognition

We employed Contextual Shortcuts Platform (von Brzeski et al.,
2007) to extract entities from text. Contextual Shortcuts uses a
combination of dictionary and machine learning approaches to
determine the set of most relevant named entities and keywords
(concepts) in a piece of text. Dictionaries themselves consist of
editorially constructed lists of named entities (e.g. persons, places,
organizations, etc., organized in a shallow taxonomy) and an
automatically generated list of concepts derived from query terms
found in web search logs. In fact, the automatically generated list
is much larger than the set of editorially derived terms. Because
some existing popular terms in query logs may also contain the
same errors as user oriented text data, such as “barrack obama”
(spelling mistake), this entity extraction algorithm can extract
some low quality entities. We can project such entities to high
quality semantic features in next step. Furthermore, the
Contextual Shortcuts Platform performs entity disambiguation and
ranks the entities discovered in a piece of text according to their
relevance to the main topic of the text, as well as their
interestingness to the broad user community (Irmaket al., 2009).

Finding the candidate Wikipedia IDs

Bloggers tend to use abbreviations and ambiguous entities;
readers can understand the meaning by the context. An example
could be the following sentences containing the entity “Detroit”:

1. Detroit won the game last night. (protagonist = “NBA”)

2. Detroit will be better on the ice this season. (protagonist
= “NHL”)

3. Obama will win Detroit. (protagonist = “Presidential
Election”)

When considering the context (such as the query context or blog
context) of the ambiguous entity, we can figure out the real
concept that the entity corresponds to (1. “Detroit Pistons”; 2.
“Detroit Red Wings”; 3. “Detroit, Michigan”). We designed the
semantic similarity algorithm based on the work of (Cilibrasi &

Vitanyi, 2007) to automatically identify the closest concept from
the Wikipedia database.

Cilibrasi & Vitanyi (2007) computed the normalized semantic
relatedness between two entities using the Google distance. In our
experiment, we first search for the extracted (ambiguous) entity in
a Wikipedia resolver component, which returns a list of Wikipedia
IDs given a named entity or concept (e.g. Detroit_Pistons or
Detroit_Red_Wings from “Detroit”). The Wiki resolver was built
by analyzing the link structure of Wikipedia in order to associate
anchor text with Wikipedia page names. It uses query terms in
web search logs in order to associate queries (e.g. named entities)
with Wikipedia page names, and it also uses Wikipedia’s
editorially created redirect pages to associate those page names
with Wikipedia pages. Finally, the above associations are merged
into one final score mapping a query or named entity into one or
more Wikipedia IDs. We then compute the Google distance
between the entity and each Wikipedia concept (ID) in the context
of protagonist (because we indexed the blog by protagonist) by
the following formula.

)},(log),,({loglog

),,(log)},(log),,({log
)|,(_

21 PentityCPentityCMinM

PwikientityCPwikiCPentityCMax
PwikientitydisG

−
−=

 (1)

P is the target protagonist; C is the count of results returned from
Google general web search; M is the total number of web pages
indexed by Google; G_dist is the normalized Google distance
between the Wikipedia ID and entity, ranging from 0 to 1 (0
means semantic identity, 1 means no semantic relatedness). In this
way, we can find the closest semantic concept feature to replace
the entity feature in the protagonist context (for instance, when
protagonist is “NBA”, the closest concept of “Detroit” is “Detroit
Pistons”). Since we built the protagonist collection directly from
query logs and used it later for ranking, the concept feature will
logically help us improve the topic model learning as well as the
ranking performance.

The final feature space is this combination of terms, extracted
entities, and Wikipedia IDs.

3.4 Building the Community Interest Vector

After we generated the topic model from the CPC, it is very
important to weight each topic. The weight of each topic measures
the degree of community interest in this topic at the current
moment. Overall, there are four different kinds of topics we found
through our experiments:

1. Background topic (stoptopic): the topic covers the very
basic background features of the protagonist. Those
words, entities and concepts (high probability occurring
within topic) could be judged as a protagonist specific
stopword list.

2. Hot topic: there are two types of hot topics for the
community; first, a topic in which the community is
continuously and increasingly focused, and second, a
topic related to breaking news surrounding the
protagonist, which is of great interest in the community.

3. Diminishing topic: the topic is no longer popular for
community; the community’s interest is shifting to other
topic(s).

4. Regular topic: we cannot tell the popularity of the topic
from historical data.

We used historical data (past few hours or days) to classify topic
type and compute the weight of each topic for the target
protagonist. The most straightforward method is to compute a list
of topic models for each corpus for a specific period of time, and
then compute the similarity of those topics, and also weight each
current topic for ranking. However, there are two major
limitations. First, the computational cost is very high, as we need
to train several LDA models and compute feature-topic
distribution distance for each topic pair. Second, this is not an
accurate way to compute weights when similarity across topics is
low.

In order to avoid those limitations, we used the learned CPC topic
model to infer the topics in the historical protagonist corpuses.
The algorithm is as follows in Fig5.

As mentioned above, from the LDA model, we obtained two
probability distributions: � - the probability of topic given the
posting P (topic | posting); and

�
 - the probability of each feature

given the topic P (feature | topic). Based on these distributions,
we compute the “Current_topic_score[k]” by summing the
posting vectors from � . We also run the model against historical
data (past n days or hours, n corpuses, worth of user oriented
documents for the protagonist) and infer the topic distributions �
in the historical data. Because the LDA model was build using the
CPC, the historical postings can be viewed as unseen data. For
each document, the inference result is:

)}|()......|(),|({)(21 xnxxx doctopicPdoctopicPdoctopicPdocTV = (2)

which indicates the probability of each specific topic in the unseen
document from the current perspective. For each past day or hour,
by summing these topic probability vectors together, we can
obtain a “History_topic_score[i][k] ”, which reflects, from the
current viewpoint (topic model), the probability that on the past ith

For each protagonist

Training_CPC_topic_model; //k topics

Current_topic_score[k] = � document_topic_dist[k];

//compute the CPC topic score by summing each doc-topic distribution in CPC

Compute History_topic_score[n][k]

//Inferring past n days (or hours) topic distribution based on CPC topic model

CIV[k] = 0; //Community Interest Vector, each score is the weight of the topic

For each topic j

 Compute Mean and Standard_deviation (Std) for history topic score;

 If (Current_topic_score[j] >Mean + Std)

CIV[j] = b*Current_topic_score[j]*(Current_topic_score[j]/Mean);

 //Hot topic, p is the “bonus” parameter

 Else If (Current_topic_score[j] <Mean - Std)

CIV[j] = p*Current_topic_score[j]*(Current_topic_score[j]/Mean);

 //Diminishing topic, p is the “penalize” parameter

 Else

CIV[j] = Current_topic_score[j];

 //Regular topic

Fig 5. CIV building algorithm

day (or hour), the community (represented by the user oriented
corpus) is interested in topic k. By comparing the mean and the
standard deviation of specific topics’ scores for a window of the
past n days (or hours), we can decide if the topic is a “hot topic”,
“diminishing topic”, or “regular topic” as shown in the algorithm.

CIV[j] =

b⋅ Current_ topic_score[j] ⋅ Current_ topic_score[j]

history_ topic_score[i][j]
hot− topic

p⋅ Current_ topic_score[j] ⋅ Current_ topic_score[j]
history_ topic_score[i][j]

diminishing− topic

Current_ topic_score[j] regular− topic

p'⋅Current_ topic_score[j] background− topic (3)

The hot-topic and diminishing-topic CIV scores were adjusted by
the change rate of current topic score and the mean of the
historical topic scores; a bonus parameter (b, b>1) and penalize
parameter (p, p<1) were used in our algorithm to update the topic
weight. In our experiments, b = 1.2, while p = 0.8. Because we
identify the topic category by mean and standard deviation, the
change rate of a hot-topic is always > 1 and the change rate of a
diminishing-topic is always < 1. In our experiments, we also
found that some topic’s mean probability score is significant
larger than all other topics’ scores (at least 5 times larger) – we
define these topics as “background topics”, and penalize these
topics’ weights by p’ = 0.2 (penalize parameter of background-
topic). The background topic is mainly composed by a list of
general and domain specific stopwords (for instance protagonist =
“Obama”, the stopwords can be “Obama” and “president”). Even
though the background topics’ weights are large in all the
corpuses, these topics are harmful for community interest based
ranking. (As shown in formula (3))

The following diagrams (Fig 6 & 7) are examples of CIV topic
weighting. The protagonist is “Obama”, and experiment time is
Nov 5th 2008, one day after the 44th president election, the
training corpus is Yahoo! Buzz postings (we will discuss the data
in next section) and corpus size is 1,491 user generated postings.
We show the highest weighted “Hot topic”, which can be
summarized as “Obama wins the election”, and whose top
features are “Barack_Obama”, “Election”, “African_American”,
“victory”, “Victory_Records” and “first_black_president”. We
also show the lowest weighted “Diminishing topic”, which can be
characterized as “Sarah Palin and Hillary Clinton”, with top
features like “Sarah Palin”, “sarah”, “palin” “Hillary clinton”,
“newsweek”, “club”, “cloth”.

 Fig 6. Nov 5th, Diminishing topic: “Sarah Palin & Hillary Clinton”

Fig 7. Nov 5th, Hot topic: “Obama win president election”

In the example(Fig 6 and 7), we compute the topic-feature
distribution using the current “Nov 5th” corpus about “Obama”,
and then use it to infer topic distributions in the past 30 days
(from Oct 5th to Nov 4th). By computing the mean and the
standard deviation of the topic probability scores, we can identify
hot and diminishing topics by their final weights in the CIV. In
the diagram, the first bar on the left is the initial (current) topic
weight, and the last bar on the right is the final adjusted weight of
the topic in the CIV.

3.5 Ranking

When a query is equal to or is similar to the protagonist, we can
bias the ranking result by using the current Community Interest
Vector. For any given retrieved document collection R (doc1,
doc2… dock), based on our topic model (� , topic-feature
distribution), we can infer the topic distribution of each document
in the search results as mentioned earlier. Because the topic vector
of each document in the search results is in the same vector space
as CIV, we can compute the final document interest score by
cosine vector similarity:

 (4)

Since the CIV represents the community’s interest with respect to
each protagonist, the final ranking score can be viewed as a
pseudo-voting based ranking, where the user oriented text data
serves as a proxy for the votes. Thus, the ranking score can
represent P(interest | doc), the probability that a community is
interested in a given document.

4. EXPERIMENTS

4.1 Data

In this paper, we focus on computational community interest, and
we need to use real-time user oriented text data to represent the
community’s interests. We chose Yahoo! Buzz data
(http://buzz.yahoo.com) for the following reasons. First, this is a
user oriented text dataset (mainly in the news domain), which
primarily includes two parts: user selected news stories and user
oriented news comments. Second, a user may copy and paste from
other news services (like CNN.com), but they tend to select only
specific parts of the news instead of the whole story. The selective

��

�

==

=

⋅

⋅
=

=

n

i
ix

n

i
i

n

i
ixi

xx

topicdocTVtopicCIV

topicdocTVtopicCIV

docTVCIVSimdocscoreranking

1

2

1

2

1

),()(

),()(

))(,()(_

sentences or passages have higher probability of being interesting
to the global community, since background context information is
filtered out. This is also beneficial for our interest extraction
algorithm and ranking. Third, compared with blog data, Yahoo!
Buzz focuses more on news instead of social network
communications, which facilitates news based ranking and user
evaluation. Finally, each Buzz posting contains a time stamp that
can be used for corpus selection.

We selected 129 hot queries from news search engine query logs,
and used those query terms and entities directly as the protagonist
to search and index Buzz postings. Here, we do not use a
protagonist detection algorithm (an algorithm which attempts to
confirm that a given posting is actually about the target
protagonist) for two reasons. First, we want to get enough text
data for building the community interest topic model (corpus size
is important in obtaining a useful model); protagonist detection
algorithms may filter a large percentage of postings. Second,
some existing protagonist algorithms are very time consuming,
and we want the ranking algorithm to be used in an online
information retrieval system. However, using a query directly as a
protagonist will bring in some noisy data (see below).

From Oct to Dec 2008, we indexed 274,400 postings with an
average length of 769 characters. The postings were indexed by
protagonist (the entity from query log), stemmed words, entities
and Wikipedia concepts as well as the published time stamp. As
mentioned earlier, we used Contextual Shortcuts as the named
entity recognition algorithm to find all the entities within the
postings, and then, for each entity, we find the candidate
Wikipedia concepts for each ambiguous entity by using the
Wikipedia resolver component mentioned earlier. Finally, we
computed the Normalized Google Distance (NGD) in the context
of the protagonist (equation 4), and replace the entity feature with
the Wikipedia concept feature if possible.

One posting may correspond to several different protagonists. The
index module was checking for new postings from the user
community about these 129 protagonists in real-time during the
experiment, and the attached publish time stamp was used to filter
the training (“current”) and historical corpuses for topic extraction
and topic weighting.

4.2 Topic Modeling (Training)

We select the training corpus as follows:

Fig 8. Workflow to identify training corpus

For each protagonist, if there were more than 1000 postings
published in the past 24 hours, we capped the training corpus
(CPC) size at 1000, which represents community’s interest toward

the protagonist for the past t hours (t< 24). Otherwise, we will use
the past 24 hours worth of postings for LDA model construction.

After comparing several different values for the “number of
topics” parameter K in LDA, we fixed K at 30, as the extracted
topics should be neither too general nor too specific. We set the
LDA parameters setting as � = 50/K and

�
 = 0.1. In the

experiment, we find the topic number and
�
 value significantly

influenced the validity of CIV and ranking performance.
Generally the lower

�
, the sparser the topics will be, which means

the model prefers to assign few terms to each topic (Heinrich,
2005). Meanwhile, the number of topic K defines how many
cognitive dimensions we need to define for each CIV.
Unfortunately, we cannot guarantee that the experimental
parameter value is the optimized as we didn’t have enough
evaluation resources (we will mention that in next section) to
compare the performance across different parameter settings.
Instead, in this paper, we used intuitive best values for this
experiment by comparing different parameter setting by ourselves.

4.3 CIV Weighting

To build the final Community Interest Vector (CIV), we need to
infer the corpus-topic distributions for the past n days (or hours)
and use trend analysis to weight each topic.

For each protagonist, we used a corpus of size (m), as in the
previous LDA training step. In the historical posting collection
about a target protagonist, we composed h corpuses (in
experiment h = 30) ordered by publish time, each corpus
containing m postings the same as the training corpus. Because
daily or hourly variation of corpus size may be large and we don’t
want the inference performance dropped significantly due to the
corpuses’ unbalance. By analyzing the inferred topic probability
scores (component by component) across different days’ corpuses,
we computed the final topic weight as the CIV:

CIV(protagonist) = [W-topic1, W-topic2 … W-topict] (5)

The CIV reflects the current community interest toward the
protagonist. We will use this vector directly for ranking. During
the experimental period, we computed a CIV for each protagonist
4 times a day.

4.4 Ranking and Duplicate Detection

We use the same Yahoo! Buzz source for the ranking test. We
sent each protagonist as query to Buzz search, which returned the
ranked Buzz postings for the recent three days. Each retrieved
document was treated as an unseen document and we inferred the
document-topic distribution based on the existing LDA topic
model for the target protagonist. The rank score for a document
was calculated using equation4.

However, in the ranked result, we find some duplicate results for
two reasons:

Content duplication: the content is virtually identical, same
verbiage, but maybe in different word order; talks about the
same event.

Topic duplication: the words may different, but the topic
distribution is similar and it talks about the same event

We attempt to detect and remove duplicate news stories from the
result. For content duplication, bi-gram fuzzy edit distance was
used to identify duplicate documents. If the fuzzy similarity of the

title and the first paragraph was larger than a threshold (in the
experiment it was 0.8), the duplicate document will be removed
from the result. For topic duplication, the inferred document-topic
vector cosine similarity was computed between documents; if the
topic similarity is larger than a threshold (in the experiment it
was0.8), the duplicate document will be removed.

5. EVALUATION

The evaluation of a ranking algorithm is difficult, especially for
our real-time ranking task, which cannot employ existing test
collections such like TREC. Precision-at-document-n (Anh &
Moffat, 2002)is currently a good measure for the web, as most
users will be focusing on only the very first page of n results. And
Normalized Discount Cumulative Gain (NDCG) (Järvelin &
Kekäläinen, 2002) works when user graded relevance data is
available.

For this paper, the most important contribution is to capture the
dynamic community interest since community interest may
change from time to time. As a result, we have to conduct a real-
world evaluation based on selected protagonists over a period of
time. We focus on the “Interesting & hot rate”-at-document-n as
well as the “Not interesting or not relevant rate”-at-document-n.

We set up a preliminary evaluation with five real readers for a
period of 5 days (Nov 11, 12, 13, 14, 17 2008) intended to test the
concept and may serve for future large scale evaluations. Nine
queries were randomly chosen in the evaluation (from top
frequent query log of the first two weeks of November 2008) as
following table shows:

Query: Average Training Size Average CIV covered time Interval

Bush 517.7 postings 24 hours

Economy 1000 postings 18.3 hours

Obama 1000 postings 16.1 hours

McCain 245.3 postings 24 hours

Wall Street 405.3 postings 24 hours

Iraq 258.7 postings 24 hours

Google 284.3 postings 24 hours

Microsoft 177.6 postings 24 hours

Movie 440.7 postings 24 hours

Tab 3. Nine queries for evaluation.

On the five evaluation days, we constructed a topic model every
day at 14:00PM and users accessed our evaluation system on
15:00PM to make their judgments. The above table shows the
average number of training documents for LDA topic extraction
for each query (protagonist). “Obama” and “Economy” are the
popular protagonists during that time, which exceeded the
threshold, and we used only 1000 most recent Buzz postings for
training (the 1000 postings covered 18.3 and 16.1 hours
community interests respectively).

In the evaluation system, after logging in, the judges were
required to click nine queries one by one and read the top 5
ranked documents in two collections each: Yahoo! Buzz ranked
results and CIV algorithm ranked results. Two different ranked set
were randomly presented to user. After reading each ranked
search result, users were asked to grade one of the following
options about this document:

�
 “Interesting and Hot” = This document is directly relevant to

the given query and it is about something currently interesting and hot
in the news. �

 “Mildly interesting” = This document is relevant to the given
query, BUT it is about something no longer in the news. �

 “Not interesting or Not relevant” = This document is relevant
to the query, but is completely not interesting or new, or it is not directly
related to the topic. �

 “Duplicate” = This document talks about the same event as
another document in the same subset.

For 5 five days for 5 users and 9 queries corresponding to top 5
documents for each algorithm, there were a total of 2,250 valid
evaluation results collected. We first employed the idea of
Precision-at-document-n, and averaged rates of above four
categories for each ranking method. The results are shown in the
following table:

Interesting
and Hot

Mildly
Interesting

Not interesting
or Not relevant

Duplicate
Interest
increase

Not Interest
increase

CIV 46.72% 20.44% 22.63% 8.76% 6.57% -16.79% 11/17/2008
Monday

BUZZ 40.15% 18.25% 39.42% 0.73%

CIV 60.74% 20.74% 10.37% 8.15% 15.56% -25.93% 11/14/2008
Friday

BUZZ
� � � � � � � � � � � � 	
 � 	 � � � � � � �

CIV 67.54% 18.86% 7.46% 6.14% 25.88% -26.75% 11/13/2008
Thursday

BUZZ 41.67% 23.25% 34.21% 0.44%

CIV 60.22% 20.44% 12.71% 6.63% 15.47% -18.78% 11/12/2008
Wednesday

BUZZ 44.75% 23.20% 31.49% 0.55%

CIV 53.74% 25.11% 16.30% 3.96% 15.42% -14.98% 11/11/2008
Tuesday

BUZZ 38.33% 28.19% 31.28% 2.20%

CIV 58.48% 21.26% 13.44% 6.39% 16.74% -20.59%
ALL

BUZZ
41.74% 22.91% 34.03% 0.99%

Table 4. Precision-at-document-n Evaluation results.

In the evaluation results, we focus on two questions: whether the
CIV ranking can improve “Interesting & Hot” rate; and whether
the CIV ranking can decrease “Not interesting or Not relevant”
rate. In the following diagram, we present these answers in a
clearer way:

Fig 8. Comparing CIV ranking with existing ranking method

In fig 8, the lower line shows that for five days, the “Interesting &
Hot” rate increased 16.74% on average as compared to the
existing Yahoo! Buzz ranking algorithm. The upper line shows
that the “Not interesting or Not relevant” rate decreased 20.59%
on average. On Monday, 11/11/2008, the “Interesting & Hot” rate
increased by only 6.57%, on all the other days it increased by
more than 15%.

Secondly, NDCG evaluation was used to process the graded
relevance judgments. We set the “Interesting & Hot” relevance
rate = 3, as user values these results significantly better than other
results. Meanwhile, “Mildly interesting” rate = 1, “Not interesting
or Not relevant” rate = 0 and “Duplicate” rate = 0.

Based on these definitions, we compute the average NDCG@3
and NDCG@5 across test queries based on (Järvelin &
Kekäläinen, 2002). The results are shown in the following table
with significant test:
 �

� � � � �
�

� � � � � � � 	
 � � � �
 � � � � �
� 	
 � � � �
 �
� 	
 � � � �
 �

Table 5. NDCG Evaluation results.

From the evaluation results, we find that the CIV ranking
algorithm significantly increased the ranking performance (for
both Precision-at-document-n and NDCG) compared with an
existing popular search engine ranking algorithm.

6. DISCUSSION

The preliminary evaluation shows that the global community
interest is a good indicator for IR ranking. However, in our
experiments, we still found some limitations in this algorithm.

First, some queries (or protagonists) are ambiguous, and LDA
cannot directly help us separate the topics semantically for
ranking. This can be a problem of the polysemy effect (Sparck
Jones, 1972). For instance “Georgia” is an ambiguous query,
which can represent “a state in the United States” or “a country”.
Building a CIV for “Georgia” (in Oct 2008) is risky, as it will mix
the “US presidential election” and the “Georgia war” topics into
the same vector space, and we may need a word sense
disambiguation algorithm to solve his problem.

Second, we did not use a protagonist detection/verification
algorithm to better clean the training corpus in the experiment,
resulting in some noisy data leaking into the training corpus. For
instance, the word “Obama” shown in one posting does not
necessarily mean that “Obama” is the protagonist of the posting.
In our experiment, we did not implement the protagonist
detection/verification because of the data (training) size problem.
In future research, we need to collect more (user-oriented) text
data and filter a higher quality training corpus for topic extraction.

Last, we find CIV ranking algorithm generates more topic
duplicate results (shows in Tab 4), even though we used duplicate
detection. A possible reason is the topic distributions among the
top ranked results are similar in our algorithm as they are all
extracted from the same corpus. Better duplicate detection
algorithm should be used in the future work to reduce the
duplicate rate.

Another finding was that the training and historical corpus size is
important for the CIV ranking algorithm. An example of this is in
the ranking performance on Monday 11/11/2008; it is lower than
the other weekdays because users generated less text data (fewer
postings) over the prior weekend, and we thus obtained fewer
postings for training for community interest extraction.

In future evaluations, we will be targeting a larger scale user study
with the goals of deciding an ideal training corpus, best feature
types, and the optimized training and weighting parameter
settings. Meanwhile, we hope to compare the CIV algorithm with
the existing specific ranking algorithm individually. We will also
develop the ranking algorithm with more sophisticated techniques.

We are currently working on Community Interest Language
Model (CILM).

In summary, community interest modeling with the real world
user oriented text data is an effective method for mirroring real
world community from a cognitive perspective. By weighting
each topic extracted from query driven time sensitive corpus, we
can measure the degree of interest, namely, interest based ranking,
which is differ from relevance ranking. The community interest
vector in our experiments demonstrates as an effective way to
rank retrieved results.

7. REFERENCES

[1] Adamic, L. A., & Glance, N. (2005). The political
blogosphere and the 2004 U.S. election: divided they
blog. Proceedings of the 3rd international workshop on
Link discovery.

[2] Agichtein E., Brill E., Dumais S., (2006). Improving web
search ranking by incorporating user behavior
information, Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval

[3] Anh, V. N., &Moffat, A. (2002). Improved retrieval
effectiveness through impact transformation. Paper
presented at the ACM International Conference
Proceeding Series.

[4] Azzopardi, L., Girolami, M and van Rijsbergen, C.J.
(2004).Topic Based Language Models for ad hoc
Information Retrieval. In proceedings of the
International Joint Conference on Neural Networks,
Budapest, Hungary

[5] Bernard J. Jansen, A. S., Judy Bateman, Tefko Saracevic.
(1998). Real life information retrieval: a study of user
queries on the Web. Paper presented at the ACM
SIGIR.

[6] Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent
Dirichlet Allocation. The Journal of Machine Learning
Research, 3.

[7] von Brzeski, V., Irmak, U., &Kraft, R. (2007). Leveraging
context in user-centric entity detection
systems.Conference on Information and Knowledge
Management. ACM. pp 691-700

[8] Cilibrasi, R. L., & Vitanyi, P. M. B. (2007). The Google
Similarity Distance. IEEE Transactions on Knowledge
and Data Engineering, 19(3).

[9] Craig Silverstein, H. M., Monika Henzinger, Michael
Moricz. (1999). Analysis of a very large web search
engine query log. Paper presented at the ACM SIGIR.

[10] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.
K., & Harshman, R. (1999). Indexing by latent semantic
analysis. Journal of the American Society for
Information Science, 41(6).

[11] Fox S., KarnawatK., MydlandM., DumaisS. & White T.,
(2005). Evaluating implicit measures to improve web
search, ACM Transactions on Information Systems
(TOIS), v.23 n.2, pp147-168

[12] Haveliwala, T. H. (2003). Topic-Sensitive PageRank: A
Context-Sensitive Ranking Algorithm for Web Search.
IEEE Transactions on Knowledge and Data
Engineering, 15(4).

[13] Heinrich, G. (2005). Parameter estimation for text analysis o.
Document Number)

[14] Hofmann, T. (1999). Probabilistic latent semantic indexing.
Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in
information retrieval.

[15] Irmak, U., von Brzeski, V, & Kraft, R. (2009). Contextual
Ranking of Keywords Using Click Data. Paper
presented at the IEEE International Conference on Data
Engineering.

[16] Järvelin K. & Kekäläinen J., Cumulated gain-based
evaluation of IR techniques, ACM Transactions on
Information Systems (TOIS), v.20 n.4, p.422-446,
October 2002

[17] Joachims, T. (2002). Optimizing search engines using
clickthrough data, Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, Edmonton, Alberta, Canada

[18] Jones, K. S., Walker, S., & Robertson, S. E. (1976). A
probabilistic model of information retrieval:
development and status.

[19] Kleinberg, J. M. (1999). Authoritative sources in a
hyperlinked environment. Journal of the ACM, 46(5).

[20] Kobayashi, M., & Takeda, K. (2000). Information retrieval
on the web. ACM Computing Surveys (CSUR), 32(2).

[21] Lafferty, J., & Zhai, C. (2001). Document language models,
query models, and risk minimization for information
retrieval. Proceedings of the 24th annual international
ACM SIGIR conference on Research and development
in information retrieval.

[22] Page, L., Brin, S., Motwani, R., & Winograd, T. (1998). The
PageRank Citation Ranking: Bringing Order to the
Web.

[23] Richardson, M., & Domingos, P. (2002). The Intelligent
Surfer: Probabilistic Combination of Link and Content
Information in PageRank.

[24] Salton, G., & Yang, C. S. (1973). On the Specification of
Term Values in Automatic Indexing. Journal of
Documentation, 29(4).

[25] Sparck Jones, K. (1972). A statistical interpretation of term
specificity and its applications in retrieval. Journal of
Documentation, 28.

[26] Wei,X., Croft,W. B., (2006).LDA-based document models
for ad-hoc retrieval, Proceedings of the 29th annual
international ACM SIGIR conference on Research and
development in information retrieval, Seattle,
Washington, USA

[27] Wen J., Nie J. & Zhang H., (2002). Query Clustering Using
User Logs, ACM Transactions on Information Systems,
20(1), pp 59-81

